Experimental approach to the kinetic study of unstable site-directed irreversible inhibitors: kinetic origin of the apparent positive co-operativity arising from inactivation of trypsin by p-amidinophenylmethanesulphonyl fluoride.
نویسندگان
چکیده
Experimental characterization of enzyme inactivation by unstable irreversible inhibitors has only previously been carried out by using discontinuous methods involving preincubation, removal of samples and further residual activity assays. A continuous method for the kinetic study of these inhibitors in the presence of an auxiliary substrate was recently proposed in a theoretical study. This method was based on approximate expressions for the evolution of the product concentration, which contained series expansions with five or more exponential terms, seriously complicating their use in practice. In the present paper, a new experimental method has been developed for the kinetic study of unstable and site-directed irreversible inhibitors, considering two different ranges of inhibitor concentration. Thus at low inhibitor concentrations, the system evolves from an initial to a final steady state, the rates of which are described by exact analytical equations. At high inhibitor concentrations, however, the product accumulation can be described by an exact uniexponential equation. This simple and efficient method has been applied to the kinetic study of trypsin inactivation by p-amidinophenylmethanesulphonyl fluoride, near the optimum pH of the enzyme. The dependence of the final steady-state rate on the substrate concentration shows apparent positive co-operativity which has not previously been reported. The kinetic origin of this type of co-operativity is predicted by one of the exact analytical equations derived here. The instability of new protein and non-protein irreversible inhibitors has to be carefully characterized to prevent true unstable irreversible inhibitors being wrongly described as allosteric reversible inhibitors.
منابع مشابه
Experimental and Kinetic Study of CO Oxidation Over LaFe1-xCuxO3 (x=0, 0.2, 0.4, 0.6) Perovskite-Type Oxides
In this paper, catalytic oxidation of CO over the LaFe1-xCuxO3 (x= 0, 0.2, 0.4, 0.6) perovskite-type oxides was investigated. The catalysts were synthesized by sol-gel method and characterized by XRD, BET, FT-IR, H2-TPR and SEM methods. The catalytic activity of catalysts was tested in catalytic oxidation of CO. XRD patterns confirmed the synthesized perovskites to be single-phase perovskite-ty...
متن کاملThe Effect of TiO2-Nanoparticle on the Activity and Stability of Trypsin in Aqueous Medium
Trypsin (E.C.3.4.21.4) is a serine protease commonly used in proteomics for digestion of proteins. In the present study, the effect of nano-TiO2 on the conformation and catalytic activity of trypsin were studied. The thermal denaturation of trypsin has been investigated in the presence and absence of nano-TiO2 over the temperature range (293-373 K) at pH 3.0 and 7.25, using temperature scanning...
متن کاملA New Approach for Monte Carlo Simulation of RAFT Polymerization
In this work, based on experimental observations and exact theoretical predictions, the kinetic scheme of RAFT polymerization is extended to a wider range of reactions such as irreversible intermediate radical terminations and reversible transfer reactions. The reactions which have been labeled as kinetic scheme are the more probable existing reactions as the theoretical point of view. The ...
متن کاملInvestigation of Fluoride Adsorption from Aaqueous Solutions by Modified Eucalyptus Leaves: Isotherm and Kinetic and Thermodynamic Studies
Background and purpose: The World Health Organization (WHO) has specified the tolerance limit of fluoride content of drinking water to be 1.5 mg/L, since excessive intake of fluoride leads to various detrimental diseases. The present study assessed the adsorption effectiveness of HCl-modified eucalyptus leaves in fluoride removal from synthetic solutions. Materials and Methods: In this experim...
متن کاملQuantum Mechanical Approach for the Catalytic Mechanism of Dinuclear Zinc Metallo-β-lactamase by Penicillin and Cephalexin: Kinetic and Thermodynamic Points of View
Metallo-β-lactamases (MβL) catalyzing the hydrolytic cleavage of the four-membered β-lactam ring in broad spectrum of antibiotics and therefore inactivating the drug; However, the mechanism of these enzymes is still not well understood. Electronic structure and electronic energy of metallo-β-lactamase active center, two inhibitors of this enzyme including penicillin and cephalexin, and differen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 299 ( Pt 1) شماره
صفحات -
تاریخ انتشار 1994